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Abstracl

Any attempt to introduce automation in{o the monitoring of complex physical
systems must start from a robust anomaly cietm[ion capability. Ilis task is far from
straightforward, for a single definition of what constitutes an anomaly is difficult
[o come by. In addition, [o make the n]oni[onng Imeess  efficien[, and to avoid
the potential for information overload on human operators, attention focusing must
also be addressed. When an anomaly occurs, more often Ihan not several sensors
are affected, and the partially redundant information they provide can be confusing,
particularly in a crisis situation where a response is needed quickly.

Tbe foeus of this paper is a new technique for attr-ntion  focusing. l?Ic technique
involves reasoning about the distance be[wccn Iwo frequency distributions, and is
used to detect both anomalous system parameters and “broken” causal dcpenden-
tics. These (WO forms of information together isolate the Ioeus of anomatous
behavior in the system being monitored

Kcy Words: Qualitative Reasoning, and Naive Pilysics (causal reasoning, n~onitor-
ing)

I’his  paper has not already been accepted by and is not cumenlly under  review for
a journal or o[her conference. Nor will it be subrnilh~d  for such durin~ lJCA1’S review
period
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I)etermining the I.oci of Anomdics
using Minima] ~ausal Modds

Abstract

Any a([crnp( to introduce autonlation  into lbe n)onitoring  of complcx  physical

sys[ems rnus(  start from a robust anomaly de[ec[iorl  capability. Illis task is far from

straightforward, for a single de. fini[ion  of what cons[i[u[cs an anorr)aly is diffrcul[

[o come by. In addi[ion,  [o make the monitorirr~.  process efficicn[,  and [o avoid

[be potcn(ial  for infor[nation  overload on human opcra[ors,  at(c.ntion  focusing nlus[

also be addressed. When an anomaly occurs. more often ihan not several sensors

arc affoxxt,  and the partially rcdundarr[ information they provide can be cc)nfus.  ing,

particularly in a crisis situa[ion where a response IS needed quickly

‘1’hc  focus of this paper is a new technique for a[tention  focusi[tg I’he  (echniquc
involves  reasoning about  [hc distance between two frequency distributions, and is

used [o detect both anomalous system parameters and “broken” causal depcnden -

tics. I’hcse  two forms of information together isolate the 10( us of anomalous

behavior in the sys(em being monitored

1 Introduction

Mission Operations personnel at NASA have the task of deterlnining, from moment
[o momcrrt,  whether a space platform is exhibiting behavior which is in any way
anomalous, which could disrupt the operation of [he platform, and in the worst case,
could represent a loss of ability to achieve mission goals. Our app] each to introducing
automation into real-time systems monitoring is based on two observations: 1 ) mission
operators employ multiple methods for recognizing anomalies, arid 2) mission operators
do not and should not interpret all sensor data all of the time. Wc seek an approach
for determining from moment (o moment which of the available sensor data is most
informative about the presence of anomalies occurring within a system. The work
reported here extends the anomaly detertion  capability in the SII.MCSN  monitoring
systcrn [4; 5] by adding an attention focusing capability.

Other model-based monitoring systems include Dvorak’s h4tMlC,  which performs
robust discrepancy detection for continuous dynamic systems [61, ancl lMJostc’s  DATMI,

which infers system states from incomplete sensor data [3]. Tlis work also complements
other work within NASA on empirical and model-based methods fc)r fault diagnosis of
aerospace platforms [1; 7; 8; 10].

2 Background: The SIZI.MON  Approach

IIOW dots a human operator or a machine observing a complex ~)tlysical system de-
cide when something is going wrong? Abnormal be}lavior is alu’ays defined as some
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kind of departure from ncmnal behavior. Unfortunately, there appears (o trc no single,
crisp dcfrni[ion  of “nortl]al”  behavior. In the [traditional monitoring tcctlniquc  of linli[
sc.nsirrg, normal hchavior  is prcdefined by nominal value ranges  for sc. nsors.  A forl -
danlcn[al  lirni[a[ion  of this approach is the lack of scnsi[ivity [0 con[ex[  In Ihc olhcr
[traditional monitoring [e.chnique of discrepancy dcmztion, normal hchavior  is ob[aincd
by simulating a rnocfcl  of I}IC system beirlg moni[olcd,  This apptoach, while avoidin~
[hc insensitivity to con[ext of [he limit sensing approach, has its own liroitations. I’hc
approach is only as good as the system model. In addition, nor[l~al sys[em  behav-
ior [ypically changes with [ime, and the model must continue to evolve. Given these
Iinlitations. i[ can be difficult to distinguish genuine anomalies from crtors in the model.

Noting the limitations of the existin~ monitoring techniques, wc have dcvclopcd
an approach to monitoring which is designed to n~ake the anonlaly  dctcc[ion process
more robust, to reduce [hc number of undetected anomalies (false negatives). Towards
[Ilis end, wc introduce mul(iple  anomaly models, each employing a different notion of
“nortnal” behavior.

2.1 Anomaly Ikkction Methods

In [his section, we briefly describe methctds that we use to dctc.rll~inc when a sensor
is reporting anomalous behavior. The first few nlcasures  usc know]edgc  about each
individual sensor, without knowledge of any relations among, sensors.

Surprise. An appealing way to assess whether current behavior is anomalous or not
is via comparison to past behavior. This is the essence of the surprise measure. It is
designed to highlight a sensor which behaves other than it has historically. Specifically,
surprise uscs [he historical frequency distributiorl for the sensor in two ways: To
determine the likelihood of the given current value of the sensor, and to examine the
relative likelihoods of different values of the sensor. It is those sensors which display
unlikely values when other values of the sensor are nlore likely which get a high surprise
score. Surprise is not high if the only re+wson a sensor’s value is unlikely is that there
are many possible values for the sensor, all equally unlikely.

Ala!lml,  Alarm thresholds for sensors, indexed by operatin~  mode, typically are
established through an off-line analysis of systent design. l“he no[ion of alarm in
SE[,MON extends the usual one bit of information (the sensor is in alarm or it is not),
and also reports how much of the alarm range has been traversed. l’htrs a sensor which
has gone deep into alarm gets a higher score than one which has just crossed over the
alarm threshold,

Alarm Anticipation. llre alarm anticipation measure in SELMON performs a simple——
form of trend analysis to decide whether or not a sensor is expected to bc in alarm in
the future. A straightforward curve lit is used to prc,jext when the scrlsor  will next cross
an alartn dlreshold,  in either direction. A high scoi e means the sensor will soon enter
alartn or will remain there. A low score means the sensor will remain in the nominal
range or emerge from alarm soon.

Value Change. A change in the value of a sensor may be. inrtica[ivc  of an anort~aly.
In o~cicr w better assess such an event, the value ch{~nge measure in SE[ .h40N  compares
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a ~ivcn value cl]angc to historical value changes .sCcli on that sensor. ‘I”hc score reported
is based on lhc proportion of previous value charrxcs  whict) were Ir-ss  than the ~ivcn
value ctlan~c, [t is IIlaxirllulll when the gi\cn  value C hangc is ttlc ~lCiltCSl  value change
sc.cn 10 date on that sensor. 1[ is rninimunl when no value chance has occurred in that
sensor.

Al[}lough many anomalies can be dc[ccted  by applying anor[laly  models 10 [he
behavior reported al individual sensors, sonw can orIly be de{ected by reasoning about
interactions occurring in a system and about behavior reported by several sensors.

!>cvia~.on. The deviafion  measure is our extension of the haditional  method of
discrepancy detection. As in discrepancy detection,,  comparisons arc made between
prcdic[cd  and actual sensor values, and differences are interpreted to bc indications of
anomalies. l’his raw discrepancy is entered into a normalization process identical to
that used for the value chnrrge  score, and i[ is this rci,rcserr[ation of rc.lative discrepancy
which is reported. Thedeuiafion score for a sensor is rninimrrrn  if thcl-e is no discrepancy
and maximum if [he discrepancy be[wccn predicted and actual is the greates[  seen to
date on tha[ sensor.

Devinlion  only requires that a simulation be available in any form for generating
sensor value predictions. However, the remaining serrsifivify  and cascading alarrus
rncasures  require the ability to simulate a[ld reason with a causal model of the sys[ern
being monitored.

Sensitivity and Cascading Alarms. Sensi(iviry n leasures the potential for a large
global perturbation to de~clop from cur-rent state. Cascading alf]rms  measures the
potential for an alarm sequence to develop from crtlrent state. Iloth of these anomaly
mca.surcs  use an event-driven causal simulator [2; 9] to generate predictions aborr[
future states of the system, given curTent state. Current state is taken [o be defined
by both the current values of system parameters (not all of which may be sensed) and
the pending events already resident on the sirnula[or agenda. The measures assign
scores to individual sensors according to how the system parameter corresponding to a
sensor participates in, or influences, the predicted global behavior. A sensor will have
its highest serrsifivify score when behavior originatirlg at that sensor causes all sensors
causally downstream to exhibit their maximum value change to date. A sensor will
have its highest cascading alarmr  wore wl]en  behavior originating al that sensor causes
all sensors causally downstream to go into an alarm state.

2.2 Previous Results

In order to assess whether SELMON incre~sed the robustness of the anomaly detection
process, wc performed the following experiment: We compared SH.MON performance
to the performance of the traditional limit sensing technique in selecting critical sensor
subsets spexified by a Space Station Environmental Control and Life Support System
(I;CIIX)  domain expert, sensors seen by that expert as useful in unde.rstandingepisodcs
of anomalous behavior in actual historical data fronl EC1.SS testbcd operations.

The experiment asked the following specific question: }Iow often did SIiLMON  place
a “critical” sensor in the top half of its sensor ordcri[lg  based on tlrc anomaly detection
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mcasorc.s”
“1’bc performance of a random sensor sclcc[ion algori[hrn would bc expected (o bc

abOLlr  50%;  any particular sensor would appear in [hc lop half of lt]c scns.or ordering
abou[  half [he. [imc. I,imi[ sensing dctcctcd  [hc anomalies 76.3% of [hc tirrlc. SIX.MON

rfctcc[cd  the anomalies 95. i % of the tirnc.
These results show SELMON Perfornling  considerably better than [hc traditional

pracricc  of limit sensing. They lend credibility [o our premise that [he. most  cffcc[ive
rnonitorirrg system is one which incorporates several models of anomalous behavior.
Our aim is to offer a more complete, robust se[ of techniques for anornaty de[cction
to make human operators more effective, or to provide the basis for an automated
monitor ing capability.

I’hc following is a specific exarnplc  of the value added of sti[.hloN.  During
an cpisoctc in which [be FH.SS pre-heater failed, system pressure (which normally
oscillates wi[hin a known range) became stable. This “abnormally normal” behav-
ior is not detc.cted by traditional monitm inp, metl]ods because the system pressure
rcrnains  firmly in the nominal range where limit sensing fails [0 tri~p,er. Further-
more. tbc fluctuating behavior of [he sensor is riot modckxt; the. prc.dic[ed value
is an averaged stable value which fails to triggel discrepancy dctec[ion. See [4;
5] for nlore details on [hcse previous results in evaluating the SEI .MON approach.

3 Determining the Locus of an Anomaly

A robust anomaly detection capability provides the core for monitoring, but only when
this capability is combined with attention focusing does monitoring bccomc  both robust
and efficient. Otherwise, the potential problems of information overload and too many
false positives may defeat the utility of the monitoring system.

I’he attention focusing technique developed here uses two sources of information:
historical data describing nominal system behavior, and causal infer mation describing
which pairs of sensors are constrained to be correlated, due to the presence of a
dependency. The intuition is that the origin and extcrlt of an anomaly can bc determined
if the misbehaving system parameters and the misbehaving causal dependencies can be
dctcrmirred.  Such infomlation also supports reasoning to distinguish whctber  sensors,
systcm parameters or mechanisms are misbehaving due to t}le fact that the signature of
“broken” nodes and arcs in the causal graph are distinguishable. SCE. I;igure 1.

I:or example, the expected signature of an anomalous sensor includes the node
of the scr~sor itself and the immediately adjacent arcs corresponding to the causal
dcpcndcncies  that the sensor  participates in directly. The intuition is that the actual
system is behaving normally so the locus of “broke.nness” is isolated to tbc sensor and
the set of adjacent causal dependencies which attempt and fail to reconcile the bogus
value reported by the sensor.

“I-bc expected signature of an anomalous systc.m paranle.ter also includes nodes
and arcs which arc downstream in the causal gra~lh from the node. corresponding to
ttw systcm pararnetcr.  I’be intuition here. is that the misbehavior, bcin:  in Ibc actual
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l:igure 1: Anomalous System Parame[e.rs,  Sensors and Mechanisms

systcrn, will propagate. (Clearly a heuris[ic  interpretation, for not all rnisbehaviors  will
propagate).

The expected signature of an anomalcms mezhanism  also includes arcs and nodes
causally downstream from the arc corres~wtding to the mechanism, Once again, t}le
intuition is that the misbehavior is in the system itself, and it will propagate. The way
to distinguish this case from the anomalous systenl parameter case is to examine all
input arcs (assuming [here are more than one) to tile most causally prior node in the
“broken” subgraph.

3.1 Distance and Causal Distamx

While SELMON runs, it computes  incremental frequency distributions for all sensors
being monitored. These frequency distributions can be saved as a me[}md for capturing
behavior from any episode of interest. Of particular interest are historical distributions
which cormxpond  to nominal system behavior.

To identify an anomalous sensor, we apply a dis[ance  measure, defined below, to
the frequency distribution which represents rexxnt  behavior to the historical frequency
distribution representing nominal behavior. We call the measure simply disfarrce. 10
identify a “broken” causal dependency, we frr-s[  al)ply the same dis[ance measure to
the historical frequency distributions for the cause sensor and the effect sensor. This
reference distance is a weak representation of the correlation that exists bctwccn  the
values of the two sensors due to the causal depende.rlcy. This rcfe.rence  distance is then
compared to the distance between the frequency distributions based on reeent data of
the same cause sensor and effect sensor. I“he difference between the refercncc  dis[ance
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a n d  the rc.cen[ rtis[ancc  is [he mcast)rc  of IIIC “hrokcnncss”  of [hc (-ausat dcpcndcncy.
Wc call this  measure causal di.s[ancc.

3.2 l)csird ]’t-oper-tics  of [he I)istance Measure

Ik%nc a distribution D as [hc vec[or d, such [hat

V1. o<(l, <l

and
n- - l

>: d, ~ I

,.0

For a sensor S, we assume tha[ the ranF,c of values for [he scnsorhas been partitioned
into n contiguous subranges  of equal size which exhaust the range. We construct a
frequency distribution as a vector Ds of length n, wl,cre the value of d, is the frequency
with which S has displayed a value in the z[h subrarigc.

If our aim was only 10 compare diffcrcn[  frequency distributions of the. same sensor,
we could use a distance measure which required the. number of partitions, or bins in the
two distributions to be equat, and the range of values covered by the distributions to be
the same. }Iowever,  since our aim is 10 be able 10 compare the frequency distributions
of different sensors, these conditions must be relaxed.

Before defining the set of desired properties of [lie distance measure, we define two
special types of frequency distribution. Ixt F be the random, or flat distribution where
Vi, di == ~, and entropy is maximized. LCI S; be the se[ of “spike” distributions where
d i = 1 and Vj #- i, dj = O, and entropy is minimized.

II is our view that the flat and spike distributions should be maximally distinguished
by our distance measure.. For what chan~c of behavior seems more startling, more
abnormal, more indicative of a deep anomaly than a sensor which has been perfectly
predictive suddenly offering no basis for prediction, or vice versa?

More generally, we seek a distance nwasure for frequency distributions with the
following properties:

Distance
VD1D2,A(D1, D2) >0
This property merely defines the measure as a distance measure..

Identity
VD, A(D, D) = O

Symmetry
VDl D2, A(Dl , fJ2) :- A(DZ, D,)
Wc do not wish to emphasize whether WC are comparing recent data to historical

data or vice versa. Also, we do not wish to emphasize whether we are. comparing cause
data to effect data or vice versa. Wc want our method to be dliven by the simplest
causal graphs of undirected dependencies
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Distinctness

I’hc distance measure should distinguish dis[in(  [ frcquclwy  distl ibutiorrs

Spike [Iistittctncss
Vi#~, A(.$,,  S)) >0
We wish the set of Si {o be distinguishable.

Spike Ordering
Vi, A(S,,.$, + ,) < A(sl. si+2)
The dis[ancc measure should preserve the fact that [he bins rcprc.sent a discretiz.ation

of a corr{inuously-valued parameter, with an implied ordering arrtong  t}w. values.

Spike Equidistance
Vi #- j, A(.$,,.S, +l) z A(sj,.$j+  I)

There should be no difference in weighting of tlm spike dis[ributiorrs  (assuming bins
of equal width)

SpikcYFla[ Equidistqrrce
Vi #. j, A(.$,,  L’) = A(S), F)

The difference bctweerr  any spike distribution and Lhe flat distribution is to be the
same. (All spike distributions have minimal, and equal entropy. )

E.Mrema Vl)l lJzVi, A(DI, D2) < A(.$i,  F)
Any spike distribution and the flat distribution are to bc. considered the most dif-

ferent. All other distributions fall in between. This is our original and rnos[ important
motivation in devising the distance measure.

3.3 The Distance Measure

The distance measure is computed by projecting the two distributions into the two-
dimensional space [J,s] in polar coordinates and takkrg the euclidian distance be[ween
the projections.

Dcfirre the “flatness” component ~(D)  of a distribution as follows:

, _ JjhtroplJ(D)
log n

where Ent ropy(fj) is the familiar

n-l

‘-x (fi . log d,
i=lj

This is simply a normalized entropy measure for the distribution. Note that O <
j(l)) <1.

I>cfine [he “spikencss”  component S(1)) of a distribution as:
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A

1=1

F
1=1 so

l:igrrrc 2: The frrnc[ion A(D1, 1)2).

n-l

xjj). –’ -di
11–1:=0

This is simply the ccn[roid value calculation for the distribution. The weighting
factor @ will be explained in a moment. (hrce again, O < S(D) < 1.

Now take [~, s] to be. polar coordinates [r, O]. This maps F to the origin and the s;
to points along an arc on the unit circle. See Figure 2.

By inspcztion,  the Spike Distinctness, Spike Ordering and Spike/Flat Equidistance
properties are satisfied. The Spike Equidistance property is satisfied because there is
no unequal weighting applied in the centroid  calculation. ‘l’he  Distance, Identity and
Symmetry properties follow from taking the euclidian dis[ance bctwccn the projections
of the distributions. The Exfrema  property is satisfied by taking ~) :: ~. This choice of
d guarantees that A(SO,  S.-l) = A(F, So) = A(F, S.-l) = I and all other distances
in the region which is the range of A are by inspection < 1.

The Distinctness property is not satisfied by the  function A(l~l, D2). This is not
surprising because the mul[i-dimensional  space arising from the number of bins in a
distribution is collapsed to a two-dimensional space [j, s]. Thoughts cm how to address
this limitation appear below.

Insensitivity to the number of bins in the two distributions and the range of values
encoded in the distributions is provided by the (/,s] projection function, which abstracts
away from these properties of the distributions.

3.4 Results

In this section, we report on the results of applyin[: the dis[ribu[ic)n  dis(ance measure
10 the task of focusing attention in monitoring. I’t)e distribution distance measure is
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Figurc3:  Thel;orward  Reactive Cor~~rol Sys[elll  (I.RCS) cJft}~e. Space Shuttle.

used toidentify  nlisbehaving  nodes (disronce)and  ftrcs(causol  disfurlce) in the causal
graph of the system being monitored, or equivalently, detect and isolate the extent of
anomalies in the system being monitored.

3.4.1 ASpaee  ShuttIe  h-opulsionSub systen~

Figure 3 shows a schematic for the Forward Reactive Control System (F_RCS)  of the
Space Shuttle. Helium provides backpressure when valves are open to force propellant
into the manifolds, orje~s. There are IWO assemblies as shown, one for fuel and one for
oxidizer. When these substances mix in the jets, sp(mtaneous  ignition occurs.

Figure 4 shows a causal graph for a portion of [he FRCS of the Space Shuttle. A
full causal graph for the Reactive Control System, comprising the Forward, I,eft and
Right RCS, was developed with the domain expert.

3.4.2 Examples

SM.MON  was run on seven episodes describing nominal behavior of the FXCS.  The
frequency distributions collected during these runs were merged. Reference distances
were computed for sensors participating in causal dependencies.

SEI.MON  was then run on 1
3 different fault episodes, representing faults such as

leaks, sensor failures and regulator failures. Two c,f these episodes will be examined
here; however, results were similar for all episodes. In each fault episode, and for
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I’igure  4: Causal Graph for the FRCS of the Space Sllu[[le

each sensor, the dis[ribu[ion distance measure was applied [o the incremental frequency
distribution collec[cd  during the episode and the historical frequency distribution from
t}lc merged nominal episodes. These distances were a measure of the “brokenness” of
nodes in the causal graph; i.e., instantia[ions  of dlc. disfarrce measu[c.

New dis[ances  were computed between the distributions corresponding to sensors
participating in causal dependencies. The differences betwesn the new distances and
the reference distances for the dependencies were a measure of the “brokenness” of
arcs in the causal graph; i.e., instantiation of the causal disfanr-e measure.

The first episode involves a leak affecting the first and second manifolds (jets) on
the oxidizer side of the FRCS. The pressures at these two manifolds drop to vapor
pressure. The dependency between these pressures and the pressure in the propellant
tank is altered because the valve between the propellant tank and the manifolds is
closed. Thus there are two anomalous system parameters (the manifold pressures)
and two anomalous mechanisms (the agreement between the propellant and manifold
pressures when the valve is open).

The disfance and causal distance measures computed for nodes and arcs in the
FRCS causal graph reflect this faulty behavior. See Figure 5. (10 visualize how the
distribution distance measure circumscribes the extent of anomalies, the coloring of
nodes and the width of arcs in the figure are correlated with the nlagnitudes  of the
associated dislance and causal distance scores).

The behavior at the third manifold is due to a known bug in t}ie tlaining sirnula!or
software, which generated the anomaly signatures used in these ezarnplcs.  The apparent
anomaly at the helium tank temperature. has a different explanation. When the valves
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Figure 5: A leak fault

between the propellan[  tank and the manifolds close, the volume of the total system
decreases. Since pressure remains the same, temperature changes in accordance with
the ideal gas law. SELMON  detects this change.

The second episode involves an overpressuriza(ion  of the propellant tank due to a
regulator failure. Orrboard  software automatically attempts to close the valves which
isolate the helium tank from the propellant tank. One of the valves sticks and remains
open.

The distance  and causal dismrce  measures isolate both the. misbehaving system
parameters (propellant pressure and valve status indicators) and the altered relationships
between the helium and propellant tank pressures and between the propellant tank
pressure and the valve status indicators. Overpressurization  of the propellant tank also
alters the usual relation between propellant tank pressure and manifold pressures. See
Figure 6. Note that the software bug affecting predicted behavior at the third manifold
has manifested again.

4 Discussion

The distance and causal disfance measures  basti on the dis~ibuti~n  distance m~surc
combine two concepts: 1 ) empirical data alone can be an effective model of behavior,
and 2) the existence of a causal dependency betwm n two parametrxs  implies that their
values are somehow correlated. T?le causal distance measure corls[nrcts a model of the
correlation between two causally related parameters, capturing the gc.ncral  notion of
constraint in an admittedly abstract manner. Nonetheless, the.se. nlodcis of constraint
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arising from causality provide surprising discriminatory power for determining which
causal dependencies (and corresponding system mechanisms) are misbehaving. (In the
disfance measure for detecting misbehaving sys(en} parameters, we are simply using
the degenerate constraint of expected equality between historical and recent behavior.)

The approach described in this paper has usability advantages over other forms
of model-based reasoning. The overhead involved in construct ng the causal and
behavioral model of the system is minimal. Ile behavioral model is derived dircztly
from actual data; no offline modeling is rcquird. The causal mode.! is of the simplest
form, describing only the existence of dependencies. For the Shuttle RCS, a 198-node
causal graph was constructed in a single one and cme half hour sc.ssion between the
author and the domain expert.

4.1 Monitoring Architecture

The attention focusing capability provided by the dismnce  and causal disfance  measures
can be combined with the multiple-viewpoint anomaly detwtion  capability already
developed in SELMON (o construct a general monitoring architceturc.

The multiple anomaly measures (including the diwmce and causal  dismnce  mea-
sures, which are anomaly detection measures in their own right) provide continuous
anomaly deteetion capability. All of these measures are normalized to [he range [0, 1]
so their sensitivity, individually or collectively, cau be fine-tuned for the behavior of
particular monitored systems. Whenever a de[eetcd anomaly is announced, the extent
of [he anomaly is isolated by applying the results c)f the disfance and causal  disfcmce
measures to the causal graph of the syste.nl,  If SEI .MON is supporting a human oper-
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a[or, IIlc operator’s attcntiorl  is focused  on IIIC locus  of ttjc anomaly,  ra[her than the

potcn[ially long and confusing list of the individual rnanifcstrr[ions  of [IIC anomaly.

4.2 Alternate Distance Measurm

Other dis[ance  measures derived from nlore standard s[a[istical concepts certainly are
possible. For example, [he mean and s[andard deviation of a distribution might form
(1IC basis for the projection space of the func[ion  A. Mos[ of the desired properties
for the distance measure can be achieved, with the notable cxccptic)n of the Eztrcnm
property. (Consider three dis~ributions:  [he flat dis[ribrr[ion  F’, a spike distribution S?,
and a distribution with equal peaks at the. lowest- and higtlcs[-valued  bins i = O and
i = n – 1. The mean is the same for these distributions and the s[andard deviation is
Ieasi  for the spike distribution. }Iowever,  the fla[ distribution does not have the greatest
standard deviation, violating the Eztrcmrr property. Satisfying this property is a prime
motivation for our work. Nonetheless a performanccc omparison c~f a distance measure
based on the mean and standard deviation of a distr ibution (or other features) would be
useful.

The X2 measure of the difference between two distributions is another possibility.
I lowcvcr,  the s[andard definition of X2 would have to be modified to accommodate
not only distributions with different numbers of da[a points, but also distributions with
different numbers of bins.

5 Future Work

In addition to exploring alternate distance measures, several issues need to be examined
to continue the evaluation of [he attention fc~usirlg  technique based on the distance
measure, and its utility in monitoring.

We need to understand the sensitivity of the [e~hnique to how sensor value ranges
are partitioned. Clearly the discriminatory power of the distribution distance measure
is related [o the resolution provided by the number of bins and the bin boundaries. ~le
results reported here are encouraging for the number of FRCS sensor bins were in many
cases as low as three and in no cases more than eight. Separately, we are developing
a density-based auto-binning technique which selects bin boundaries which the data
naturally reflect. Results have been promising and we hope to soon remove this element
of arbitrariness in our approach.

Wc need to understand the suitability of the technique for systems which have
many modes or configurations. We would expect that the discriminatory power of the
tcchniquc  would becompromiscd if the distributions describing behaviors from different
modes were merged. Thus the technique requires that historical data representing
nominal behavior is separable for each mode. If there are many modes, at the very
least there is a data management task. A capability for trackin~ mode transitions is
also required. We are exploring the use of unsupervised learning to identify and build
classifiers for systcm modes directly from historical data.
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We need to understand the conscc~ucnces  of [I,c f)isrinc(ness  proprmy  no[ being
satisfied by [hcdistribu[ion dis[ancc  measure. Of coltccrn  is whc[tlel or not distributions
w c  w i s h  to d i s t i n g u i s h  arc in fac( be ing  dis[ingulstlcd.  I’t]c Ju(iicial  i n t r o d u c t i o n  o f

additional components (e.g., [hc number of local nlaxirna in a frequency dis[ribu[ion)
to the dis[ribu[ion  projcc[ion space [~, s] Inay bc rc{luircd 10 cnhancc discriminabili[y.

6 Applications

SELMON k being applied al the NASA Johnson Space CenIer as a nlonitoring tool for
Space Shuttle Operations. Currcn[  application cffor(s  include d)e onc for the Propulsion
(PROP) flight control discipline reported on here, and ones for the Guidance, Navigation
& Control (GNC)  discipline, the Mechanical (MhlACS) discipline and the Thermal
(EECOM) discipline. An operational SELMON  prototype has bc.en available since
[he recent Hubb!e Repair mission. Sm.MoN runs in a client-server environment and
processes change-only da[a from [he telemetry server on hundreds of sensors in real
[ime.

At the Jet Propulsion Laboratory, wc arc Iooklng  a[ the problem of onboard au-
[oma[ed downlink determination for the I’iu[o Express pre-projcc[.  There has also
been a general surge of interest recently in spaccoaf[  autonomy. The challenge is to
devise methods for robustly detecting and rccoverirlg from anomalies onboard. When
onboard software is unable to effect a recovery, the spacecraft requests assistance from
the ground and prepares an anomaly rclmrt to boots[rap  [he analysis of the ground
experls. The anomaly detection and attention focusing capabilities of SELMON may be
well-matched to these tasks.

7 Summary

We have described the properties and performance of a distance measure used to identify
misbehavior at sensor locations and across mechanisms in a system being monitored.
The technique enabtes the tocus of an anomal y to be deterrninrxt.  This attention foeusing
capability is combined with an anomaly dc[cction capability in a t-obust, efficient and
informative monitoring system, which is being appl md in mission operations at NASA.
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